
QPX and Parallel I/O in the HACC cosmology
framework

Hal Finkel
Salman Habib, Katrin Heitmann, Adrian Pope, Vitali Morozov, Venkat Vishwanath,

et al.

March 7, 2013

Hal Finkel (Argonne National Laboratory) Threads in HACC March 7, 2013 1 / 11

Cosmology

See part 1 (on threading) for the introduction.

Hal Finkel (Argonne National Laboratory) Threads in HACC March 7, 2013 2 / 11

HACC

The HACC (Hybrid/Hardware Accelerated Cosmology Code) Framework
meets these requirements using a P3M (Particle-Particle Particle-Mesh)
algorithm on accelerated systems and a Tree P3M method on CPU-only
systems (such as the BG/Q).

Hal Finkel (Argonne National Laboratory) Threads in HACC March 7, 2013 3 / 11

RCB Tree

The short-range force is computed using recursive coordinate bisection
(RCB) tree in conjunction with a highly-tuned short-range polynomial
force kernel.

Level 0

Level 1

Level 2

Level 3

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

(graphic from Gafton and Rosswog: arXiv:1108.0028)

Hal Finkel (Argonne National Laboratory) Threads in HACC March 7, 2013 4 / 11

RCB Tree (cont.)

At each level, the node is split at its center of mass

During each node split, the particles are partitioned into disjoint
adjacent memory buffers

This partitioning ensures a high degree of cache locality during the
remainder of the build and during the force evaluation

To limit the depth of the tree, each leaf node holds more than one
particle. This makes the build faster, but more importantly, trades
time in a slow procedure (a “pointer-chasing” tree walk) for a fast
procedure (the polynomial force kernel).

Hal Finkel (Argonne National Laboratory) Threads in HACC March 7, 2013 5 / 11

Force Kernel

Due to the compactness of the short-range interaction, the kernel can be
represented as

fSR(s) = (s + ε)−3/2 − fgrid(s) (1)

where s = r · r, fgrid(s) = poly[5](s), and ε is a short-distance cutoff.

An interaction list is constructed during the tree walk for each leaf
node

When using fine-grained threading: using OpenMP, the particles in
the leaf node are assigned to different threads: all threads share the
interaction list (which automatically balances the computation)

The interaction list is processed using a vectorized kernel routine
(written using QPX compiler intrinsics)

Filtering for self and out-of-range interactions uses the floating-point
select instruction: no branching required

We can use the reciprocal (sqrt) estimate instructions: no library calls

Hal Finkel (Argonne National Laboratory) Threads in HACC March 7, 2013 6 / 11

Prefetching

Prefetch all loads (but never prefetch the same 64-byte L1 cache line
twice)!

For stride-1 streams, data would otherwise be in the L1P (14-20 cycle
access latency). For more complicated patterns, the data would
otherwise be in the L2.

1 for (i = 0, j = 0; i < count1−7; i = i + 8, j = j + 32)
2 {
3 dcbt((void ∗)&xx1 [i+offset]);
4 dcbt((void ∗)&yy1 [i+offset]);
5 dcbt((void ∗)&zz1 [i+offset]);
6 dcbt((void ∗)&mass1[i+offset]);
7 ...

Hal Finkel (Argonne National Laboratory) Threads in HACC March 7, 2013 7 / 11

QPX Intrinsics

Use threads and unrolling to hide latency (but remember that there
are only 32 floating-point registers).

Most floating-point operations have a 6-cycle latency: yields an
effective delay of 6/(threads per core) instructions.

1 for (i = 0, j = 0; i < count1−7; i = i + 8, j = j + 32)
2 {
3 ...
4 b0 = vec sub(b0, a1);
5 c0 = vec sub(c0, a1);
6

7 b0 = vec mul(b0, b0);
8 c0 = vec mul(c0, c0);
9

10 b1 = vec ld(j, yy1);
11 c1 = vec ld(j+16, yy1);
12 ...

Hal Finkel (Argonne National Laboratory) Threads in HACC March 7, 2013 8 / 11

QPX Intrinsics (FMA)

Modern super-computers are designed to compute low-order
polynomials: do many FMAs!

1 for (i = 0, j = 0; i < count1−7; i = i + 8, j = j + 32)
2 {
3 ...
4 b1 = vec madd(b2, a15, a14);
5 c1 = vec madd(c2, a15, a14);
6

7 b1 = vec madd(b2, b1, a13);
8 c1 = vec madd(c2, c1, a13);
9

10 b1 = vec madd(b2, b1, a12);
11 c1 = vec madd(c2, c1, a12);
12 ...

Hal Finkel (Argonne National Laboratory) Threads in HACC March 7, 2013 9 / 11

QPX Intrinsics (select and sqrt)

Use estimates with refinement to get only the precision that you need.

When possible, use select and don’t branch!

1 for (i = 0, j = 0; i < count1−7; i = i + 8, j = j + 32)
2 {
3 ...
4 b1 = vec rsqrte(b0);
5 c1 = vec rsqrte(c0);
6 ...
7 b0 = vec sel(b1, a6, b2);
8 c0 = vec sel(c1, a6, c2);
9 ...

Hal Finkel (Argonne National Laboratory) Threads in HACC March 7, 2013 10 / 11

Parallel I/O

For large writes (many TB in total), use non-collective I/O. We can
choose either MPI I/O or POSIX I/O.

Write one separate file per I/O node (which corresponds to 128
compute nodes).

Preallocate the extent of the file.

Each rank writes into a disjoint space (without any kind of data
reorganization).

Protect all data with CRC64 (“checksum”) codes! – Please contact
me for the source code.

Hal Finkel (Argonne National Laboratory) Threads in HACC March 7, 2013 11 / 11

	Introduction
	Requirements and Design
	RCB Tree and Force Kernel
	The Force Kernel
	Parallel I/O

